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Abstract

The thermal stability of two dimensional parallel convective motion in a fluid confined between two vertical cylin-
ders is studied. The convective motion is induced by nonuniformly distributed heat sources in the fluid layer. A spectral
collocation method is employed to solve the axisymmetric perturbed equations arising in the linear stability analysis.
The stability boundary depends on the source distribution parameter, source strength parameter, Prandtl number
and radius ratio. In general the flow remains least stable when the source distribution parameter is maximum in the
middle of the two bounding cylinders. Thermal buoyancy mode of instability is introduced by the source distribution
parameter for lower values of the radius ratio.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the presence of adverse temperature distribution,
potentially unstable situations arise in which denser fluid
lies above less dense fluid. Such a situation may happen
by heating a quiescent fluid either from below or within.
The study of stability of fluid layers with internal heat
generation has received considerable attention owing
to the significance of convection in earth�s core leading
to volcanic eruptions and nuclear reactor design safety.
Thermal convection in a fluid with internal heat sources
is important in the theory of thermal ignition where heat
sources within the fluid are driven by an exothermic
chemical reaction. Here the thermal gradients originated
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by the chemical reaction is one of the driving force for
the onset of convection and, in turn, responsible for
the enhancement of heat transfer rate.

Vasquez [1], Garbey et al. [2] and Zeldovich et al. [3]
have studied convective chemical fronts with a detailed
list of references. The effect of nonlinear temperature
profile resulting from uniform internal heat generation
in a horizontal fluid layer was studied by Sparrow
et al. [4]. Acharya and Goldstein [5], May [6] and
Churbanov et al. [7] presented numerically the oscillat-
ing character of thermal convection in an enclosure with
uniform heat sources. Suo-Antilla and Catton [8] and
Kulacki and Goldstein [9] investigated the stability crite-
ria for various hydrodynamic and thermal boundary
conditions.

The study of heat generation within a fluid layer
because of chemical reaction and absorption of incident
radiation as in a Laser Doppler Velocimeter requires a
thorough knowledge of nonuniform volumetric energy
sources. Yucel and Bayazitoglu [10], Shaaban and
ed.
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Nomenclature

b 100 b�r1
r2�r1

, source distribution parameter
c wave speed
cp specific heat capacity
g acceleration due to gravity
Gr Grashof number
h half annulus width
k wave number
k̂ unit vector in the z direction
n number of collocation points
N normalization factor such thatR r2

r1
QðrÞ
Q0

dr ¼ C0

p pressure
P performance index
Q volume density of internal heat sources
Q0 constant
r radial coordinate
r1 2R/(1 � R), dimensionless radius of inner

cylinder
r2 2/(1 � R), dimensionless radius of outer cyl-

inder
R R1/R2, radius ratio
R1 radius of inner cylinder
R2 radius of outer cylinder
M 1/max[(r1 � b)2, (r2 � b)2]

t nondimensional time
T nondimensional temperature
�v nondimensional velocity vector
z axial coordinate

Greek symbols

a source strength parameter
b source distribution parameter
m kinematic viscosity
j thermal diffusivity
k complex eigenvalue
/ quantity introduced in Eq. (19)
h quantity introduced in Eq. (19)
q density
U dimensionless stream function
$ gradient

Superscript

* dimensional quantity

Subscripts

c critical value
0 basic state
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Ozisik [11] and Kolyshkin and Vaillancourt [12] have
applied linear theory stability criteria and studied ther-
mal stability with various values of the nonuniformity
source parameter. Fluid models with nonuniform heat
generation are also used for the analysis of photochem-
ical reactors and the theory of thermal ignition (see
[13,14]).

Curvature effect should be taken into account in
problems dealing with fluid layers as it plays a significant
role in natural and manmade phenomena like convec-
tion between earth�s tectonic plates and convection in
molten heat generating corium layer surrounding the
core in a Pressurized Water Reactor [7]. A survey of
the literature indicates that in the studies dealing with
stability of convection driven by nonuniform heat
sources in fluid layers, only the effect of different source
strengths have been investigated. But in reality, chemical
reactions occurring can also change the source distribu-
tion within the fluid medium. In batteries with flowing
electrolytes which are operating at high rates, the species
concentration distribution could be highly nonuniform
and result in spatially nonuniform exothermic reaction
rates (see [15]). Most of the batteries are cylindrical in
nature with centrosymmetric ingredients. This makes
the exothermic reaction rate to change in the radial
direction alone. Spatially nonuniform heating due to
absorption of incident radiation has been reported by
Davis and Zheng [16]. In this photochemical reaction
the heat source gets concentrated near the surface which
is exposed to laser light. Thus circumferential applica-
tion of the laser light to a body of photosensitive fluid
makes the heat source distribution as a function of
radial direction alone. Motivated by the above factors,
in this paper we study the thermal stability of a vertical
annular fluid layer with nonuniformly distributed heat
sources.
2. Mathematical analysis

Let us consider an infinitely long vertical annular
channel confined between two concentric cylinders of
radii R1 and R2 (R1 < R2) enclosing a viscous incom-
pressible fluid. The temperatures of both cylinder walls
are kept constant and equal. We choose a cylindrical
polar coordinate system, where the z-axis is directed
opposite to gravity g (Fig. 1). The origin of the coordi-
nate system is located on the cylinders� axis. The fluid
is heated with a nonuniform volumetric energy source
Q. All the physical characteristics are taken as constant,
except the density which varies linearly with temperature
in the buoyancy term (Boussinesq approximation).



Fig. 1. A diametral cross-section of the physical configuration.
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The equations governing the motion of a viscous
incompressible fluid in the above configuration under
the Boussinesq approximation are

o�v�

ot�
þ ð�v� � r�Þ�v� ¼ � 1

q
r�p� þ mðr�Þ2�v� þ gbT k̂ ð1Þ

oT �

ot�
þ ð�v� � r�ÞT � ¼ jðr�Þ2T þ Q

qcp
ð2Þ

div�v� ¼ 0 ð3Þ

The thermal convection of the fluid is produced by inter-
nal heat sources of volume density

QðrÞ ¼ Q0e
aN ½1�Mðr�bÞ2 � ð4Þ

where a is the source strength parameter, b the source
distribution parameter such that r1 6 b 6 r2, r1 and r2
being the dimensionless radii of the cylinders, N the nor-
malization factor chosen such that

R r2
r1

QðrÞ
Q0

dr ¼ C
Q0

¼ C0,
where C and C 0 are constants for varying b and
M = 1/max[(r1 � b)2, (r2 � b)2]. When b = r1 and r2, Q
is nearer to the inner and outer cylinders respectively.
The distribution (4) may be caused by radially varying
heat sources in the annular region, uniform in the azi-
muthal and axial directions. An exponential distribution
similar to (4) may result from a zeroth order reaction
[14] or absorption of incident radiation [10,13].
We define h = (R2 � R1)/2, R = R1/R2, r1 = 2R/
(1 � R), r2 = 2/(1 � R) and introduce the nondimen-
sional variables r = r*/h, z = z*/h, t = t*/(h2/m), �v ¼
�v�=ðgbqh4=2mÞ, p = p*/(qgbh3/2), T = T*/(qh2/2). Let
Gr = gbqh5/2m2 be the Grashof number, Pr = m/j the
Prandtl number and q = Q/(qcpj). In dimensionless
variables, Eqs. (1)–(3) become

o�v
ot

þ Grð�v � rÞ�v ¼ �rp þr2�vþ T k̂ ð5Þ

oT
ot

þ Grð�v � rÞT ¼ 1

Pr
r2T þ 2

Pr
eaN ½1�Mðr�bÞ2 � ð6Þ

div�v ¼ 0 ð7Þ
where �v; T and p are respectively, the velocity of the
fluid, temperature and pressure. We seek a steady paral-
lel solution for Eqs. (5)–(7) of the following type:

�v ¼ ½0; 0; v0ðrÞ�; T ¼ T 0ðrÞ; p ¼ p0ðzÞ ð8Þ
The flow (8), may be realized in the middle portion of
a sufficiently long vertical layer of fluid where the end
effects are negligible. Substituting Eq. (8) into Eqs.
(5)–(7) leads to the system

d2v0
dr2

þ 1

r
dv0
dr

þ T 0 ¼ D ð9Þ

d2T 0

dr2
þ 1

r
dT 0

dr
¼ �2eaN ½1�Mðr�bÞ2 � ð10Þ

where D is the separation constant. The corresponding
boundary conditions are

v0ðriÞ ¼ 0; T 0ðriÞ ¼ 0; i ¼ 1; 2 ð11Þ
The solution at the basic state is given by

T 0ðrÞ ¼ � a0
2
r2 � 2a1

9
r3 � a2

8
r4 � 2a3

25
r5 � a4

18
r6

þ A log r þ B ð12Þ

v0ðrÞ ¼
Dþ A� B

4
r2 þ a0

32
r4 þ 2a1

225
r5 þ a2

288
r6

þ 2a3
1225

r7 þ a4
1152

r8 � A
4
r2 log r þ E log r þ F

ð13Þ

where

a0 ¼ 1þ aNð1�Mb2Þ þ a2N 2

2
ð1�Mb2Þ2

a1 ¼ 2aNMbþ 2a2N 2Mbð1�Mb2Þ

a2 ¼ �aNM þ 2a2N 2M2b2 � a2N 2Mð1�Mb2Þ

a3 ¼ �2a2N 2M2b

a4 ¼
a2N 2M2

2

A ¼ � 1

logR
a0
2
ðr22 � r21Þ þ

2a1
9

ðr32 � r31Þ þ
a2
8
ðr42 � r41Þ

�

þ 2a3
25

ðr52 � r51Þ þ
a4
18

ðr62 � r61Þ
�



Fig. 3. Basic temperature profiles for different b when R = 0.4,
a = 1 and C 0 = 10.
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B¼ a0
2
r22þ

2a1
9

r32þ
a2
8
r42þ

2a3
25

r62þ
a4
18

r82�A logr1;

E¼DþA�B
4logR

ðr22� r21Þþ
a0

32logR
ðr42� r41Þþ

2a1
225logR

ðr52� r51Þ

þ a2
288logR

ðr62� r61Þþ
2a3

1225logR
ðr72� r71Þ

þ a4
1152logR

ðr82� r81Þ�
A

4logR
ðr22 logr2� r21 logr1Þ;

F ¼�DþA�B
4

r21�32a0r41�
2a1
225

r51�
a2
288

r61

� 2a3
1225

r71�
a4

1152
r81þ

A
4
r21 logr1�E logr1

We consider the case of a closed channel. This war-
rants the fluid flow through the cross-section of the
channel to be zero and henceZ r2

r1

rv0ðrÞdr ¼ 0 ð14Þ

The source distribution, basic temperature and velocity
profiles for different values of b are shown in Figs. 2–4
in terms of the radial coordinate

x ¼ r � 1þ R
1� R

We consider the stability of the basic state by the
method of small perturbations. Let us consider the per-
turbed motion �v0 þ �v, T0 + T, and p0 + p, where �v; T and
p are small unsteady perturbations, �v0 ¼ v0k̂. Let us
assume that the perturbation in the velocity component
vh is equal to zero and the other components vr, vz and
perturbations of T and p do not depend on h (so called
axisymmetric perturbations). Then Eqs. (5)–(7) for the
above perturbed state after linearization take the form
Fig. 2. Source distribution for different b when R = 0.4, a = 1
and C 0 = 10.

Fig. 4. Basic velocity profiles for different b when R = 0.4,
a = 1 and C 0 = 10.
o�v
ot

þ Gr½ð�v0 � rÞ�vþ ð�v � rÞ�v0� ¼ �rp þr2�vþ T k̂ ð15Þ

oT
ot

þ Grð�v0 � rÞT þ ð�v � rÞT 0 ¼
1

Pr
r2T ð16Þ

div�v ¼ 0 ð17Þ
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It is convenient to introduce the stream function W(r,z)
as

vr ¼ � 1

r
oW
oz

; vz ¼ � 1

r
oW
ox

ð18Þ

We set

Wðr; z; tÞ ¼ /ðrÞ expð�kt þ ikzÞ
T ðr; z; tÞ ¼ hðrÞ expð�kt þ ikzÞ

ð19Þ

where / and h are the amplitudes of the normal pertur-
bations, k is the wave number and k is a complex eigen-
value. Substituting Eq. (19) in Eqs. (15)–(17), we obtain
the amplitude equations

L1/¼ 2k2/ð2Þ �2k2

r
/ð1Þ � k4/þ k2

r2
/

þ ikGr v0 /ð2Þ �1

r
/ð1Þ � k2/

� �
þ/

vð1Þ0

r
� vð2Þ0

 ! !

� rhð1Þ �k /ð2Þ �1

r
/ð1Þ � k2/

� �
ð20Þ

L2h¼ k2hþ ikGrPr v0h�
T ð1Þ

0

r
/

 !
�kPrh ð21Þ

where L1 ¼ r d
dr

1
r

d
dr

� �� �2
, L2 ¼ 1

r
d
dr r d

dr

� �
.

The velocity and temperature perturbations vanish at
the sidewalls and hence the boundary conditions are

/ðriÞ ¼ 0; /ð1ÞðriÞ ¼ 0; hðriÞ ¼ 0; i ¼ 1; 2 ð22Þ
Table 1
Critical Grashof number for different n (Pr = 2, a = 1 and
C 0 = 10)

n R = 0.4,
b = 50

R = 0.4,
b = 75

R = 0.7,
b = 25

R = 0.7,
b = 100

3 376.73 465.84 453.02 498.00
7 63.12 76.21 77.20 80.60
10 65.99 80.18 79.25 87.27
12 63.86 78.34 78.99 87.11
13 63.14 77.24 78.61 87.08
14 62.71 76.48 78.48 87.06

Table 2
Comparison of the present results with others

R Pr Grc

0.9 (results of [18] are within braces) 1 733.4
2 462.2
3 353.0
5 254.5
10 167.8
20 113.7

0.4 (results of [12] are within braces) 5 261.0
20 114.7
We solve the boundary value problem using the spec-
tral collocation method based on the roots of Chebyshev
polynomials which was successfully implemented in our
previous study [17]. The convergence of the numerical
solution has been checked by varying the number of col-
location points n. Table 1 shows the critical states for
different combinations. We noticed that at n = 14 the
2% convergence criterion is met. Further increase in n

considerably increases the cost. So we fixed n as 14 in
our calculations. To ensure that the errors in eigenvalue
computations are minimal for all the cases considered,
we maintained the performance index (see [17]) below
0.8.
3. Results and discussion

Before discussing the stability properties of nonuni-
formly distributed heat source, it is interesting to com-
pare our results, for different R with previous stability
solutions. Table 2 presents a comparison between pub-
lished critical conditions and the numerical values of
the present investigation, at various Prandtl numbers.
Gershuni et al. [18] used approximating polynomials of
different degrees in their Galerkin method and so their
results differ slightly. Still we observe a good agreement
between the results at the same conditions which pro-
vides a further check on the numerical accuracy.

Computations were carried out for the radius ratios
R = 0.1, 0.4 and 0.7. The interval [r1, r2] was divided into
100 equal parts in such a way that b = r1 + b((r2 � r1)/
100). Thus b may be treated as a source distribution
parameter equivalent to b. We noticed that the shape
of the marginal stability curve changes considerably if
some of the parameters are changed. First of all we con-
sider one such sample.

The effect of Pr on the stability characteristics is
shown in Fig. 5 when b = 25 and a = 1. For a low Pr

approximation (i.e., Pr = 0.01) the marginal curve has
a single minimum. The corresponding critical wave
speed cc is nearly zero (�0.02 more exactly). The wave
speed is measured in the same units as the velocity of
kc cc

3 (744) 1.36 (1.38) �0.95 (�0.87)
9 (470) 1.33 (1.35) �1.14 (�1.04)
3 (359) 1.33 (1.35) �1.23 (�1.12)
3 (259) 1.34 (1.35) �1.33 (�1.21)
2 (171) 1.36 (1.38) �1.42 (�1.29)
5 (115) 1.36 (1.40) �1.51 (�1.36)

0 (262.4) 1.28 (1.33) �1.11 (�1.18)
3 (116.4) 1.30 (1.37) �1.28 (�1.33)
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the base flow and is normalized by the modulus of max-
imum velocity: c = Im(k)/(kGrv0max), where k is a pure
imaginary eigenvalue. Since the low Pr fluids are good
conductors of heat, they immediately dissipate tempera-
ture disturbances before the disruption of buoyancy
force causes instability. Hence the instability caused by
the unstable velocity distribution by shearing action is
referred to as shear (S) mode. On the other hand as Pr
increases, the penetration depth of the temperature dis-
turbances decreases and the buoyant force becomes
more concentrated resulting in an instability. In the
above figure, we see that Grc is considerably lowered
with a corresponding shift towards the lower wave num-
ber region even for Pr = 1. Further increase in Pr results
in the development of a nose-shaped piece in the mar-
ginal curve with a corresponding wave speed �1.11. This
converts the marginal curve into two branches, having a
local minimum in each one. Hence the nose-shaped part
of the marginal curve represents the difference between
the full stability problem and the Orr-Sommerfeld equa-
tion for the same velocity profiles. We observe that cc
shoots up with increasing Pr and exceeds even the main-
stream velocity at Pr = 5. Thus the instability caused by
fast moving thermal waves is referred to as thermal
buoyant (TB) mode and is associated with a nose-shaped
branch.

Let us see the deformation of the marginal curves for
various values of the source distribution parameter b

(Figs. 6 and 7). For this we fixed R = 0.4, Pr = 2 and
a = 1. When b = 0, the marginal curve of Gr is bimodal
Fig. 5. Marginal stability curves for different Pr when R = 0.4,
a = 1, b = 25 and C 0 = 10.
in nature as discussed above, with the lower and higher
wave number minima corresponding to TB and S modes
of instability. In these, TB mode is responsible for the
onset of instability. This is expected when b = 0, because
of the increased buoyancy force resulting from the steep
density gradient for larger curvature. As b is increased
upto 50, the nose-shaped part of the marginal curve
starts disappearing resulting in a single minimum mar-
ginal curve. Thus S mode becomes critical at b = 50.
We find that the basic flow is destabilized as b increases
from 0 to 50. Further increase in b to 100 slightly stabi-
lizes convection with Smode remaining critical. As b has
the ability to change the density gradient considerably
and hence the buoyancy force, TB modes are introduced
in marginal curves. In general we find that perturbations
corresponding to all wave numbers start moving down-
ward. An increase in b results in an increase in c and
hence c exceeds the base flow velocity. From the above
discussion, we can expect somewhat symmetrical mar-
ginal curves for Gr as R takes larger values. Fig. 8 dis-
plays the situation for R = 0.7. Here we observe that
Grc is symmetrical about b = 50.

The stability boundaries of convective motion in a
wider gap (R = 0.1) on (b,Grc) plane are shown in
Fig. 9 for various values of Pr. We notice that b pro-
duces two different effects. The flow at b = 50 is stabi-
lized when b increases from 50 to 100 for smaller
values of Pr (Pr = 0.01 and 0.5) and destabilized for
higher values of Pr (Pr = 3 and 10). The basic state
for all values of b are destabilized for increasing Pr.
Fig. 6. Marginal stability curves for different b when R = 0.4,
a = 1, C 0 = 10 and Pr = 2.



Fig. 7. Marginal wavespeeds for different b when R = 0.4,
a = 1, C 0 = 10 and Pr = 2.

Fig. 8. Marginal stability curves for different b when R = 0.7,
a = 1, C 0 = 10 and Pr = 2.

Fig. 10. kc against b for different Pr when R = 0.1, a = 1 and
C 0 = 10.

Fig. 9. Grc against b for different Pr when R = 0.1, a = 1 and
C 0 = 10.
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The effect of b on the characteristics of the secondary
flow at the neutral states, as expressed by the critical
wave number kc and the wave speed cc are shown in
Figs. 10 and 11. The transitions from S to TB mode at
b = 55 for Pr = 3 and b = 23 for Pr = 10 are marked
by jumps in both wave numbers and wave speeds. Phys-
ically this means a sudden change in the vertical cell size.
This is analogous to those arising in our previous results
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[17] where the basic state of convection in a porous
annular region was induced by uniformly distributed
heat sources. Shaaban and Ozisik [11] obtained a similar
jump for negative values of a. The abrupt change in the
Fig. 11. cc against b for different Pr when R = 0.1, a = 1 and
C 0 = 10.

Fig. 12. Change in the critical mode from S to TB.
most dangerous mode at Pr = 10 is shown in Fig. 12.
We see a sudden reduction in S mode accompanied by
the shift of global minimum to TB mode as b increases
from 22 to 24. This jump is shifted towards smaller b
Fig. 14. kc against b for different Pr when R = 0.4, a = 1 and
C 0 = 10.

Fig. 13. Grc against b for different Pr when R = 0.4, a = 1 and
C 0 = 10.
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for increasing Pr. For the S mode, the wave number is
nearly independent of b.

Figs. 13–18 show the stability characteristics for med-
ium (R = 0.4) and narrow (R = 0.7) gaps respectively.
For these gaps, we observe that the basic state at
b = 50 is always stabilized for moderate and higher val-
Fig. 15. cc against b for different Pr when R = 0.4, a = 1 and
C 0 = 10.

Fig. 16. Grc against b for different Pr when R = 0.7, a = 1 and
C 0 = 10.
ues of Pr when b either increases from 50 to 100 or
decreases from 50 to 0. More or less symmetrical critical
curves about b = 50 are seen for R = 0.7. The critical
wave numbers for Pr = 0.5 are nearly unaffected by b

for all values of R. This implies that there is not much
change in vertical cell size for all gaps when Pr = 0.5.
Fig. 17. kc against b for different Pr when R = 0.7, a = 1 and
C 0 = 10.

Fig. 18. cc against b for different Pr when R = 0.7, a = 1 and
C 0 = 10.
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No jump as in R = 0.1 is observed in the critical wave
number and wave speeds for R = 0.4 and 0.7. This
shows that the effect of R is more on the secondary flow
when it takes lower values. A comparison of Figs. 9, 13
and 16 shows that R produces two opposite effects for
different Pr. An increase in R stabilizes the flow for
Pr = 0.01 and 0.5 whereas destabilizes the flow for
Pr = 3 and 10.

The changes in Grc, kc and cc against R for different b
are plotted in Figs. 19–21 respectively. R > 0.3 is always
destabilizing. We observe that the maximum points in
Grc curves are functions of both R and b. A symmetry
Fig. 19. Grc against R for different b when Pr = 2, a = 1 and
C 0 = 10.

Fig. 20. kc against R for different b when Pr = 2, a = 1 and
C 0 = 10.
in the critical stability curves about b = 50 is seen as R
approaches 0.7 as anticipated. Jumps in kc from S to
TB mode occur when Grc reaches a maximum. We find
Fig. 21. cc against R for different b when Pr = 2, a = 1 and
C 0 = 10.

Fig. 22. Marginal stability curves for different a when R = 0.4,
Pr = 2 and b = 75.
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that these jumps are shifted towards lower R region for
increasing b. A peculiar feature is the change in direction
of travelling wave perturbations. The upward moving
perturbations for low values of R change their direction
and start moving downward for higher values of R. An
increase in b advances this change.
Fig. 23. Marginal wavespeeds for different a when R = 0.4,
Pr = 2 and b = 75.

Fig. 24. Grc against R for different a, Pr = 2 and b = 75.
Now let us turn our attention towards the source
strength parameter a. Fig. 22 shows that S mode desta-
bilizes convection for increasing a. The corresponding
perturbations (Fig. 23) are again travelling waves swept
downward and exceed the mainstream velocity as a
increases. Fig. 24 displays Grc as a function of R and a
when Pr = 2 and b = 75. As we saw earlier Grc is found
to increase initially and then starts decreasing against R
for all values of a. We find that the maximum point of
Grc is nearly independent of a. The dependence of stabil-
ity characteristics on a are shown in Figs. 25–27. We
notice that the effect of b on Grc is almost negligible
for larger values of a. But the secondary state repre-
sented by kc and cc appears to depend much on a.
Fig. 25. Grc against a for different b when Pr = 2 and R = 0.4.

Fig. 26. kc against a for different b when Pr = 2 and R = 0.4.



Fig. 27. cc against a for different b when Pr = 2 and R = 0.4.
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4. Conclusion

The onset of instability of natural convective flow in
a fluid contained between two vertical cylinders is
greatly dependent on b, a, Pr and R. In general for med-
ium and narrow gaps, the flow remains least stable when
b = 50. For wider gaps jumps in kc and cc are intro-
duced. These jumps are shifted towards the inner cylin-
der for increasing Pr. Both Pr and a destabilize
convection through TB mode of instability. Grc plotted
against R becomes almost symmetrical about b = 50
even when R approaches 0.7. An increase in b shifts
the appearance of TB mode towards lower R.
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